Motivation

- Different components require different (stable) supply voltages
- Several DC-DC converters are typically necessary to convert the battery voltage into the different required levels
- Power conversion should be as efficient as possible
 - Resource savings
 - Extend lifetime of battery-powered devices

Control theory

- Needed to tightly regulate the output voltage of a DC-DC converter
- Can play a key role in the efficiency
 - Reduce the switching activity (e.g. DCM, PFM)
 - Reduce under- and overshoots during transient ⇒ reference value can be reduced
- Alternative and modern structures alternative to linear PID worth exploring, e.g. Sliding Mode:
 - Improved dynamic performance (e.g. load transient)
 - Improved efficiency
 - Robustness to parameter variations

Implementation

- Choice between analog and digital should be made with care
- Digital implementation gives more flexibility
 - Power consumption of the additional ADC must be evaluated
 - Particularly critical at high switching frequencies
- Analog implementation generally offers faster dynamic response and lower power consumption

Challenges

- Maximize efficiency
- Optimize the control structures
 - Use innovative control techniques (especially with digital implementations)
 - Sliding mode
 - H_{∞} control
 - Fuzzy logic
 - Predictive control
 - Auto-tuning of the control coefficients
- Fully integrated DC-DC converters
- Output filter integrated on-chip
- Requires extremely high switching frequencies
- Energy harvesting

Application example – Buck-Boost converter for mobile devices

- Capable of stepping up and down the input (battery) voltage
- Analog implementation for high-performance and low-power
- 0.13 µm CMOS technology
- Efficiency improvement via control algorithm (efficient operating mode selection)

Bibliography